Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pathol ; 262(4): 495-504, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38287901

RESUMO

During cancer evolution, tumor cells attract and dynamically interact with monocytes/macrophages. To find biomarkers of disease progression in human melanoma, we used unbiased RNA sequencing and secretome analyses of tumor-macrophage co-cultures. Pathway analysis of genes differentially modulated in human macrophages exposed to melanoma cells revealed a general upregulation of inflammatory hallmark gene sets, particularly chemokines. A selective group of chemokines, including CCL8, CCL15, and CCL20, was actively secreted upon melanoma-macrophage co-culture. Because we previously described the role of CCL20 in melanoma, we focused our study on CCL8 and CCL15 and confirmed that in vitro both chemokines contributed to melanoma survival, proliferation, and 3D invasion through CCR1 signaling. In vivo, both chemokines enhanced primary tumor growth, spontaneous lung metastasis, and circulating tumor cell survival and lung colonization in mouse xenograft models. Finally, we explored the clinical significance of CCL8 and CCL15 expression in human skin melanoma, screening a collection of 67 primary melanoma samples, using multicolor fluorescence and quantitative image analysis of chemokine-chemokine receptor content at the single-cell level. Primary skin melanomas displayed high CCR1 expression, but there was no difference in its level of expression between metastatic and nonmetastatic cases. By contrast, comparative analysis of these two clinically divergent groups showed a highly significant difference in the cancer cell content of CCL8 (p = 0.025) and CCL15 (p < 0.0001). Kaplan-Meier curves showed that a high content of CCL8 or CCL15 in cancer cells correlated with shorter disease-free and overall survival (log-rank test, p < 0.001). Our results highlight the role of CCL8 and CCL15, which are highly induced by melanoma-macrophage interactions in biologically aggressive primary melanomas and could be clinically applicable biomarkers for patient profiling. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Melanoma/genética , Prognóstico , Neoplasias Cutâneas/genética , Quimiocinas/metabolismo , Macrófagos/metabolismo , Biomarcadores , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Proteínas Inflamatórias de Macrófagos , Quimiocinas CC/genética
2.
Int Immunol ; 36(3): 111-128, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066638

RESUMO

Nurr1 is a member of the orphan nuclear receptor family NR4A (nuclear receptor subfamily 4 group A) that modulates inflammation in several cell lineages, both positively and negatively. Macrophages are key regulators of inflammatory responses, yet information about the role of Nurr1 in human macrophages is scarce. Here we examined Nurr1 expression and activity in steady state and activated human macrophages. Pro- and anti-inflammatory macrophages were generated in vitro by culture of blood monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Nurr1 expression was predominant in macrophages with the pro-inflammatory phenotype. Nurr1 activation with the agonists 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) or isoxazolo-pyridinone 7e (IP7e) did not globally modify the polarization status of pro-inflammatory macrophages, but they decreased their production of TNF, IL-1ß, IL-6, IL-8, IL-12 p40, CCL2, IFN-ß, and reactive oxygen species, with variable potencies. Conversely, Nurr1 deficient macrophages increased the expression of transcripts encoding inflammatory mediators, particularly that of IL6, IFNB1, and CCL2. Mechanistically, endogenous Nurr1 interacted with NF-κB p65 in basal conditions and upon lipopolysaccharide (LPS)-mediated activation. C-DIM12 stabilized those complexes in cells exposed to LPS and concurrently decreased NF-κB transcriptional activity and p65 nuclear translocation. Expression of high levels of Nurr1 was associated with a subset of dermal macrophages that display enhanced levels of TNF and lower expression of the anti-inflammatory marker CD163L1 in skin lesions from patients with bullous pemphigoid (BP), a chronic inflammatory autoimmune blistering disorder. These results suggest that Nurr1 expression is linked with the pro-inflammatory phenotype of human macrophages, both in vivo and in vitro, where it may constitute a brake to attenuate the synthesis of inflammatory mediators.


Assuntos
Fator Estimulador de Colônias de Macrófagos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Anti-Inflamatórios/metabolismo
3.
Front Cell Infect Microbiol ; 13: 1286527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125909

RESUMO

Background: The differential time to positivity (DTTP) technique is recommended for the conservative diagnosis of catheter-related bloodstream infection (C-RBSI). The technique is based on a 120-minute difference between microbial growth in blood drawn through the catheter and blood drawn through a peripheral vein. However, this cut-off has failed to confirm C-RBSI caused by Candida spp. and Staphylococcus aureus. Objective: We hypothesized that the biofilm of both microorganisms disperses faster than that of other microorganisms and that microbial load is rapidly equalized between catheter and peripheral blood. Therefore, our aim was to compare the biofilm dynamics of various microorganisms. Methods: Biofilm of ATCC strains of methicillin-resistant Staphylococcus epidermidis, methicillin-susceptible S. aureus, Enterococcus faecalis, Escherichia coli and Candida albicans was grown on silicon disks and analyzed using time-lapse optical microscopy. The time-lapse images of biofilms were processed using ImageJ2 software. Cell dispersal time and biofilm thickness were calculated. Results: The mean (standard deviation) dispersal time in C. albicans and S. aureus biofilms was at least nearly 3 hours lower than in biofilm of S. epidermidis, and at least 15 minutes than in E. faecalis and E. coli biofilms. Conclusion: Our findings could explain why early dissemination of cells in C. albicans and S. aureus prevents us from confirming or ruling out the catheter as the source of the bloodstream infection using the cut-off of 120 minutes in the DTTP technique. In addition, DTTP may not be sufficiently reliable for E. coli since their dispersion time is less than the cut-off of 120 minutes.


Assuntos
Infecções Relacionadas a Cateter , Staphylococcus aureus Resistente à Meticilina , Sepse , Humanos , Staphylococcus aureus , Microscopia , Escherichia coli , Imagem com Lapso de Tempo , Biofilmes , Candida albicans , Staphylococcus epidermidis , Sepse/diagnóstico , Cateteres , Infecções Relacionadas a Cateter/diagnóstico
4.
Biol Direct ; 17(1): 31, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376978

RESUMO

BACKGROUND: Small extracellular vesicles (sEVs) are emerging natural nanoplatforms in cancer diagnosis and therapy, through the incorporation of signal components or drugs in their structure. However, for their translation into the clinical field, there is still a lack of tools that enable a deeper understanding of their in vivo pharmacokinetics or their interactions with the cells of the tumor microenvironment. In this study, we have designed a dual-sEV probe based on radioactive and fluorescent labeling of goat milk sEVs. RESULTS: The imaging nanoprobe was tested in vitro and in vivo in a model of glioblastoma. In vitro assessment of the uptake of the dual probe in different cell populations (RAW 264.7, U87, and HeLa) by optical and nuclear techniques (gamma counter, confocal imaging, and flow cytometry) revealed the highest uptake in inflammatory cells (RAW 264.7), followed by glioblastoma U87 cells. In vivo evaluation of the pharmacokinetic properties of nanoparticles confirmed a blood circulation time of ~ 8 h and primarily hepatobiliary elimination. The diagnostic capability of the dual nanoprobe was confirmed in vivo in a glioblastoma xenograft model, which showed intense in vivo uptake of the SEV-based probe in tumor tissue. Histological assessment by confocal imaging enabled quantification of tumor populations and confirmed uptake in tumor cells and tumor-associated macrophages, followed by cancer-associated fibroblasts and endothelial cells. CONCLUSIONS: We have developed a chemical approach for dual radioactive and fluorescent labeling of sEVs. This methodology enables in vivo and in vitro study of these vesicles after exogenous administration. The dual nanoprobe would be a promising technology for cancer diagnosis and a powerful tool for studying the biological behavior of these nanosystems for use in drug delivery.


Assuntos
Vesículas Extracelulares , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Células Endoteliais , Linhagem Celular Tumoral , Nanopartículas/química , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
5.
Biomedicines ; 10(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35884885

RESUMO

Cutaneous melanoma is one of the most aggressive and deadliest cancers in human beings due to its invasiveness and other factors. Histopathological analysis is crucial for a proper diagnosis. Optical tissue clearing is a novel field that allows 3D image acquisition of large-scale biological tissues. Optical clearing and immunolabeling for 3D fluorescence imaging has yet to be extensively applied to melanoma. In the present manuscript, we establish, for the first time, an optical clearing and immunostaining procedure for human melanoma and human cell line-derived melanoma xenograft models using the CUBIC (clear, unobstructed brain imaging cocktails) technique. We have successfully cleared the samples and achieved 3D volumetric visualization of the tumor microenvironment, vasculature, and cell populations.

6.
J Innate Immun ; 14(3): 243-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34670213

RESUMO

During inflammatory responses, monocytes are recruited into inflamed tissues, where they become monocyte-derived macrophages and acquire pro-inflammatory and tissue-damaging effects in response to the surrounding environment. In fact, monocyte-derived macrophage subsets are major pathogenic cells in inflammatory pathologies. Strikingly, the transcriptome of pathogenic monocyte-derived macrophage subsets resembles the gene profile of macrophage colony-stimulating factor (M-CSF)-primed monocyte-derived human macrophages (M-MØ). As M-MØ display a characteristic cytokine profile after activation (IL10high TNFlow IL23low IL6low), we sought to determine the transcriptional signature of M-MØ upon exposure to pathogenic stimuli. Activation of M-MØ led to the acquisition of a distinctive transcriptional profile characterized by the induction of a group of genes (Gene set 1) highly expressed by pathogenic monocyte-derived macrophages in COVID-19 and whose presence in tumor-associated macrophages (TAM) correlates with the expression of macrophage-specific markers (CD163, SPI1) and IL10. Indeed, Gene set 1 expression was primarily dependent on ERK/p38 and STAT3 activation, and transcriptional analysis and neutralization experiments revealed that IL-10 is not only required for the expression of a subset of genes within Gene set 1 but also significantly contributes to the idiosyncratic gene signature of activated M-MØ. Our results indicate that activation of M-CSF-dependent monocyte-derived macrophages induces a distinctive gene expression profile, which is partially dependent on IL-10, and identifies a gene set potentially helpful for macrophage-centered therapeutic strategies.


Assuntos
COVID-19 , Fator Estimulador de Colônias de Macrófagos , Diferenciação Celular , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo
7.
J Invest Dermatol ; 142(3 Pt A): 653-661.e2, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34499901

RESUMO

Tumor cells attract and dynamically interact with monocytes/macrophages to subvert their differentiation into tumor-associated macrophages (TAMs), which mainly promote immune suppression and neoplastic progression, but the pathways and microenvironmental cues governing their protumoral deviation are not completely understood. To identify the molecular pathways responsible for TAM differentiation, we screened the biomarkers secreted during melanoma‒macrophage interactions using Quantibody microarrays and RNA sequencing of macrophages. We found that activin A, a member of the transforming GF family, plays an instrumental role in the cross-talk between melanoma cells and monocytes/macrophages, which results in the upregulation of distinct tumor-sustaining genes and the achievement of proinvasive and immunosuppressive functions of TAMs. Blockade of activin reduces the upregulation of part of these genes and prevents the acquisition of protumoral functions, facilitating human melanoma rejection by transferred human lymphocytes in a xenograft mouse model. Remarkably, screening of two independent cutaneous primary melanoma collections showed that activin A is enriched in TAMs and melanoma cells from patients with worse outcomes and constitutes a new and independent prognostic marker. Thus, we identify activin A as a key intermediary in the protumoral and immunosuppressive functions of TAMs, with significant potential as a disease biomarker as well as an immunotherapeutic target.


Assuntos
Melanoma , Neoplasias Cutâneas , Ativinas , Animais , Humanos , Melanoma/patologia , Camundongos , Fenótipo , Prognóstico , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor
8.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439098

RESUMO

TAMs constitute a large fraction of infiltrating immune cells in melanoma tissues, but their significance for clinical outcomes remains unclear. We explored diverse TAM parameters in clinically relevant primary cutaneous melanoma samples, including density, location, size, and polarization marker expression; in addition, because cytokine production is a hallmark of macrophages function, we measured CCL20, TNF, and VEGFA intracellular cytokines by single-cell multiparametric confocal microscopy. The Kaplan-Meier method was used to analyze correlation with melanoma-specific disease-free survival and overall survival. No significant correlations with clinical parameters were observed for TAM density, morphology, or location. Significantly, higher contents of the intracellular cytokines CCL20, TNF, and VEGFA were quantified in TAMs infiltrating metastasizing compared to non-metastasizing skin primary melanomas (p < 0.001). To mechanistically explore cytokine up-regulation, we performed in vitro studies with melanoma-conditioned macrophages, using RNA-seq to explore involved pathways and specific inhibitors. We show that p53 and NF-κB coregulate CCL20, TNF, and VEGFA in melanoma-conditioned macrophages. These results delineate a clinically relevant pro-oncogenic cytokine profile of TAMs with prognostic significance in primary melanomas and point to the combined therapeutic targeting of NF-kB/p53 pathways to control the deviation of TAMs in melanoma.

9.
J Antimicrob Chemother ; 76(5): 1168-1173, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33544817

RESUMO

BACKGROUND: Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. OBJECTIVES: We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). METHODS: We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. RESULTS: The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0-3.3 × 102) versus 3.32 × 109 (6.6 × 108-3.8 × 109), P < 0.001; 0.0 (0.0-5.4 × 103) versus 1.32 × 106 (2.3 × 103-5.0 × 107), P < 0.001; and 8.1 × 105 (8.5 × 101-1.4 × 109) versus 2.7 × 108 (8.6 × 106-1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5-not applicable (NA)] versus 87.9 (60.5-NA), P = 0.05; 9.1 (6.7-NA) versus 62.6 (42.0-NA), P = 0.05; and 97.7 (94.6-NA) versus 187.3 (43.9-NA), P = 0.827. CONCLUSIONS: We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


Assuntos
Biofilmes , Pneumonia Associada à Ventilação Mecânica , Antibacterianos/farmacologia , Humanos , Intubação Intratraqueal , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Pseudomonas aeruginosa , Esteroides
10.
Ann Clin Microbiol Antimicrob ; 19(1): 44, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32972419

RESUMO

BACKGROUND: Most preventing measures for reducing ventilator-associated pneumonia (VAP) are based mainly on the decolonization of the internal surface of the endotracheal tubes (ETTs). However, it has been demonstrated that bacterial biofilm can also be formed on the external surface of ETTs. Our objective was to test in vitro the efficacy of selective digestive decontamination solution (SDDs) onto ETT to prevent biofilm formation and eradicate preformed biofilms of three different microorganisms of VAP. METHODS: We used an in vitro model in which we applied, at the subglottic space of ETT, biofilms of either P. aeruginosa ATCC 15442, or E. coli ATCC 25922, or S. aureus ATCC 29213, and the SDDs at the same time (prophylaxis) or after 72 h of biofilm forming (treatment). ETT were incubated during 5 days with a regimen of 2 h-locks. ETT fragments were analyzed by sonication and confocal laser scanning microscopy to calculate the percentage reduction of cfu and viable cells, respectively. RESULTS: Median (IQR) percentage reduction of live cells and cfu/ml counts after treatment were, respectively, 53.2% (39.4%-64.1%) and 100% (100%-100.0%) for P. aeruginosa, and 67.9% (46.7%-78.7%) and 100% (100%-100.0%) for E. coli. S. aureus presented a complete eradication by both methods. After prophylaxis, there were absence of live cells and cfu/ml counts for all microorganisms. CONCLUSIONS: SDDs used as "lock therapy" in the subglottic space is a promising prophylactic approach that could be used in combination with the oro-digestive decontamination procedure in the prevention of VAP.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Descontaminação/métodos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Contagem de Colônia Microbiana , Contaminação de Equipamentos/prevenção & controle , Escherichia coli/fisiologia , Humanos , Intubação Intratraqueal/instrumentação , Microscopia Confocal , Microscopia Eletrônica de Varredura , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Pseudomonas aeruginosa/fisiologia
11.
Cells ; 9(6)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532019

RESUMO

As macrophages exhibit a huge functional plasticity under homeostasis and pathological conditions, they have become a therapeutic target for chronic inflammatory diseases. Hence, the identification of macrophage subset-specific markers is a requisite for the development of macrophage-directed therapeutic interventions. In this regard, the macrophage-specific Folate Receptor ß (FRß, encoded by the FOLR2 gene) has been already validated as a target for molecular delivery in cancer as well as in macrophage-targeting therapeutic strategies for chronic inflammatory pathologies. We now show that the transcriptome of human macrophages from healthy and inflamed tissues (tumor; rheumatoid arthritis, RA) share a significant over-representation of the "anti-inflammatory gene set", which defines the gene profile of M-CSF-dependent IL-10-producing human macrophages (M-MØ). More specifically, FOLR2 expression has been found to strongly correlate with the expression of M-MØ-specific genes in tissue-resident macrophages, tumor-associated macrophages (TAM) and macrophages from inflamed synovium, and also correlates with the presence of the PU.1 transcription factor. In fact, PU.1-binding elements are found upstream of the first exon of FOLR2 and most M-MØ-specific- and TAM-specific genes. The functional relevance of PU.1 binding was demonstrated through analysis of the proximal regulatory region of the FOLR2 gene, whose activity was dependent on a cluster of PU.1-binding sequences. Further, siRNA-mediated knockdown established the importance of PU.1 for FOLR2 gene expression in myeloid cells. Therefore, we provide evidence that FRß marks tissue-resident macrophages as well as macrophages within inflamed tissues, and its expression is dependent on PU.1.


Assuntos
Receptor 2 de Folato/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Transfecção
12.
Front Immunol ; 11: 613975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679701

RESUMO

Background and Aims: GM-CSF-dependent macrophage polarization has been demonstrated in rheumatoid arthritis (RA). Our aim was to seek diagnostic/prognostic biomarkers for undifferentiated arthritis (UA) by analyzing GM-CSF expression and source, macrophage polarization and density in joints of patients with UA evolving to RA or PsA compared with established RA or PsA, respectively. Methods: Synovial tissue (ST) from patients with UA evolving to RA (UA>RA, n=8), PsA (UA>PsA, n=9), persistent UA (UA, n=16), established RA (n=12) and PsA (n=10), and healthy controls (n=6), were analyzed. Cell source and quantitative expression of GM-CSF and proteins associated with pro-inflammatory (GM-CSF-driven) and anti-inflammatory (M-CSF-driven) macrophage polarization (activin A, TNFα, MMP12, and CD209, respectively) were assessed in ST CD163+ macrophages by multicolor immunofluorescence. GM-CSF and activin A levels were also quantified in paired synovial fluid samples. CD163+ macrophage density was determined in all groups by immunofluorescence. Results: Synovial stromal cells (FAP+ CD90+ fibroblast, CD90+ endothelial cells) and CD163+ sublining macrophages were the sources of GM-CSF. ST CD163+ macrophages from all groups expressed pro-inflammatory polarization markers (activin A, TNFα, and MMP12). Expression of the M-CSF-dependent anti-inflammatory marker CD209 identified two macrophage subsets (CD163+ CD209high and CD163+ CD209low/-). CD209+ macrophages were more abundant in ST from healthy controls and PsA patients, although both macrophage subtypes showed similar levels of pro-inflammatory markers in all groups. In paired synovial fluid samples, activin A was detected in all patients, with higher levels in UA>RA and RA, while GM-CSF was infrequently detected. ST CD163+ macrophage density was comparable between UA>RA and UA>PsA patients, but significantly higher than in persistent UA. Conclusions: GM-CSF is highly expressed by sublining CD90+ FAP+ synovial fibroblasts, CD90+ activated endothelium and CD163+ macrophages in different types of arthritis. The polarization state of ST macrophages was similar in all UA and established arthritis groups, with a predominance of pro-inflammatory GM-CSF-associated markers. CD163+ macrophage density was significantly higher in the UA phases of RA and PsA compared with persistent UA. Taken together, our findings support the idea that GM-CSF is a strong driver of macrophage polarization and a potential therapeutic target not only in RA but also in PsA and all types of UA.


Assuntos
Artrite Psoriásica/metabolismo , Artrite Reumatoide/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos/metabolismo , Células Estromais/metabolismo , Membrana Sinovial/metabolismo , Ativinas/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imuno-Histoquímica , Subunidades beta de Inibinas/genética , Subunidades beta de Inibinas/metabolismo , Lectinas Tipo C/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Biochem Biophys Res Commun ; 520(1): 198-204, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31585732

RESUMO

Increased angiogenesis is commonly observed in chronic lymphocytic leukemia (CLL) tissues in correlation with advanced disease. CLL cells express pro- and anti-angiogenic genes and acquire a pro-angiogenic pattern upon interaction with the microenvironment. Because MMP-9 (a microenvironment component) plays important roles in solid tumor angiogenesis, we have studied whether MMP-9 influenced the angiogenic pattern in CLL cells. Immunofluorescence analyses confirmed the presence of MMP-9 in CLL tissues. MMP-9 interaction with CLL cells increased their MMP-9 expression and secretion into the medium. Accordingly, the conditioned media of MMP-9-primed CLL cells significantly enhanced endothelial cell proliferation, compared to control cells. MMP-9 also increased VEGF and decreased TSP-1 and Ang-2 expression, all at the gene and protein level, inducing a pro-angiogenic pattern in CLL cells. Mechanistic analyses demonstrated that downregulation of the selected gene TSP-1 by MMP-9 involved α4ß1 integrin, Src kinase family activity and the STAT3 transcription factor. Regulation of angiogenic genes is a novel contribution of MMP-9 to CLL pathology.


Assuntos
Angiopoietina-2/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Leucemia Linfocítica Crônica de Células B/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Patológica , Fator de Transcrição STAT3/metabolismo , Idoso , Proliferação de Células , Meios de Cultivo Condicionados , Células Endoteliais/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfa4beta1/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Proc Natl Acad Sci U S A ; 115(34): 8581-8586, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29987046

RESUMO

Cell migration through extracellular matrices requires nuclear deformation, which depends on nuclear stiffness. In turn, chromatin structure contributes to nuclear stiffness, but the mechanosensing pathways regulating chromatin during cell migration remain unclear. Here, we demonstrate that WD repeat domain 5 (WDR5), an essential component of H3K4 methyltransferase complexes, regulates cell polarity, nuclear deformability, and migration of lymphocytes in vitro and in vivo, independent of transcriptional activity, suggesting nongenomic functions for WDR5. Similarly, depletion of RbBP5 (another H3K4 methyltransferase subunit) promotes similar defects. We reveal that a 3D environment increases the H3K4 methylation dependent on WDR5 and results in a globally less compacted chromatin conformation. Further, using atomic force microscopy, nuclear particle tracking, and nuclear swelling experiments, we detect changes in nuclear mechanics that accompany the epigenetic changes induced in 3D conditions. Indeed, nuclei from cells in 3D environments were softer, and thereby more deformable, compared with cells in suspension or cultured in 2D conditions, again dependent on WDR5. Dissecting the underlying mechanism, we determined that actomyosin contractility, through the phosphorylation of myosin by MLCK (myosin light chain kinase), controls the interaction of WDR5 with other components of the methyltransferase complex, which in turn up-regulates H3K4 methylation activation in 3D conditions. Taken together, our findings reveal a nongenomic function for WDR5 in regulating H3K4 methylation induced by 3D environments, physical properties of the nucleus, cell polarity, and cell migratory capacity.


Assuntos
Movimento Celular , Polaridade Celular , Cromatina/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/genética , Cromatina/ultraestrutura , Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Microscopia de Força Atômica , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética
16.
Front Immunol ; 9: 1033, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881378

RESUMO

Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.


Assuntos
Candidíase Vulvovaginal/imunologia , Receptor alfa de Estrogênio/genética , Infiltração de Neutrófilos , Neutrófilos/imunologia , Migração Transendotelial e Transepitelial , Vagina/imunologia , Animais , Antígeno CD47/genética , Antígeno CD47/imunologia , Candida albicans , Células Cultivadas , Colo do Útero/imunologia , Colo do Útero/microbiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/imunologia , Feminino , Hormônios Esteroides Gonadais/farmacologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Progesterona/farmacologia , Vagina/microbiologia
17.
Cancer Immunol Res ; 6(3): 267-275, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29362221

RESUMO

The chemokine axis CCR6/CCL20 is involved in cancer progression in a variety of tumors. Here, we show that CCR6 is expressed by melanoma cells. The CCR6 ligand, CCL20, induces migration and proliferation in vitro, and enhances tumor growth and metastasis in vivo Confocal analysis of melanoma tissues showed that CCR6 is expressed by tumor cells, whereas CCL20 is preferentially expressed by nontumoral cells in the stroma of certain tumors. Stromal CCL20, but not tumoral CCR6, predicted poor survival in a cohort of 40 primary melanoma patients. Tumor-associated macrophages (TAM), independently of their M1/M2 polarization profile, were identified as the main source of CCL20 in primary melanomas that developed metastasis. In addition to CCL20, TAMs expressed TNF and VEGF-A protumoral cytokines, suggesting that melanoma progression is supported by macrophages with a differential activation state. Our data highlight the synergistic interaction between melanoma tumor cells and prometastatic macrophages through a CCR6/CCL20 paracrine loop. Stromal levels of CCL20 in primary melanomas may be a clinically useful marker for assessing patient risk, making treatment decisions, and planning or analyzing clinical trials. Cancer Immunol Res; 6(3); 267-75. ©2018 AACR.


Assuntos
Quimiocina CCL20/imunologia , Macrófagos/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL20/genética , Progressão da Doença , Humanos , Melanoma/patologia , Camundongos , Neoplasias Cutâneas/patologia
18.
BMC Infect Dis ; 17(1): 746, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202722

RESUMO

BACKGROUND: Despite the several strategies available for the management of biofilm-associated ventilator-associated pneumonia, data regarding the efficacy of applying antibiotics to the subglottic space (SS) are scarce. We created an in vitro model to assess the efficacy of antibiotic lock therapy (ALT) applied in the SS for eradication of Pseudomonas aeruginosa biofilm in endotracheal tubes (ETTs). METHODS: We applied 2 h of ALT to a P. aeruginosa biofilm in ETTs using a single dose (SD) and a 5-day therapy model (5D). We used sterile saline lock therapy (SLT) as the positive control. We compared colony count and the percentage of live cells between both models. RESULTS: The median (IQR) cfu counts/ml and percentage of live cells in the SD-ALT and SD-SLT groups were, respectively, 3.12 × 105 (9.7 × 104-0) vs. 8.16 × 107 (7.0 × 107-0) (p = 0.05) and 53.2% (50.9%-57.2%) vs. 91.5% (87.3%-93.9%) (p < 0.001). The median (IQR) cfu counts/ml and percentage of live cells in the 5D-ALT and 5D-SLT groups were, respectively, 0 (0-0) vs. 3.2 × 107 (2.32 × 107-0) (p = 0.03) and 40.6% (36.6%-60.0%) vs. 90.3% (84.8%-93.9%) (p < 0.001). CONCLUSION: We demonstrated a statistically significant decrease in the viability of P. aeruginosa biofilm after application of 5D-ALT in the SS. Future clinical studies to assess ALT in patients under mechanical ventilation are needed.


Assuntos
Antibacterianos/farmacologia , Intubação Intratraqueal/instrumentação , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia
19.
Biomed Opt Express ; 8(6): 3110-3118, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663930

RESUMO

The ability to acquire 3D images of the heart and its vasculature at cellular resolution facilitates a more detailed study of many heart diseases. Here, we describe a novel technique to image in 3D the heart vasculature by combining the CUBIC clearing protocol combined with in vivo administration of fluorescent-labeled lectin. The use of these techniques in combination with Selective Plane Illumination Microscopy (SPIM) made it possible to obtain high resolution 3D images of the cardiac vascular tree. This methodological approach may enhance the visualization of 3D images of the cardiac vasculature remodeling associated with coronary disease.

20.
J Immunol ; 198(5): 2070-2081, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093525

RESUMO

Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local microenvironment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and illustrate the coexpression of MAFB and MAFB-target genes in CD163+ tissue-resident and tumor-associated macrophages. The contribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti-inflammatory transcriptional and functional profiles of human macrophages.


Assuntos
Diferenciação Celular , Síndrome de Hajdu-Cheney/imunologia , Macrófagos/fisiologia , Fator de Transcrição MafB/metabolismo , Monócitos/fisiologia , Animais , Anti-Inflamatórios , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Microambiente Celular , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Ontologia Genética , Síndrome de Hajdu-Cheney/genética , Homeostase , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator de Transcrição MafB/genética , Camundongos , Mutação/genética , Receptores de Superfície Celular/metabolismo , Células Th2/imunologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...